Third Semester B.Tech. Degree Examination, January 2016 (2013 Scheme)

13.301 : ENGINEERING MATHEMATICS - II (ABCEFHMNPRSTU)

Time: 3 Hours

PART-A

Max Marks 100

Sendena CST No Warks 100

TRIVANORUM-11

TRIVANORUM-11

TRIVANORUM-11

TRIVANORUM-11

(Answer all questions. Each question carries 4 marks.)

- 1. Find the directional derivative of $\phi = x^2 + xy + z^2$ at (1, -1, -1) in a direction towards the point (3, 2, 1).
- 2. Find the sine transform of $f(x) = \sin x$ in $0 < x < \pi$.
- 3. Obtain the partial differential equation by eliminating the arbitrary function from $z = f(y+3x) + g(y-3x) + \frac{1}{6}x^3y.$
- 4. Find the particular integral of $(D^2 + 2DD' + D'^2)z = e^{x-y}$.
- 5. Using the method of separation of variables, solve $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, given that $u(x, 0) = 4e^{-x}$.

PART-B

(Answer one full question from each Module. Each question carries 20 marks).

MODULE-I

- 6. a) Show that $\nabla^2 r^n = n(n+1)r^{n-2}$ where r = xi + yj + zk and r = |r|.
 - b) Find the work done by the force $\overrightarrow{F} = (yz + 2x)i + xzj + (xy + 2z)k$ when it moves a particle along the curve $x^2 + y^2 = 1$, z = 1 in the positive direction from (0, 1, 1) to (1, 0, 1).
 - c) Use divergence theorem to evaluate $\iint_S \overrightarrow{A} dS$ where $\overrightarrow{A} = 12x^2yi 3yzj + 2zk$ and S is the portion of the plane x + y + z = 1 included in the first octant.
- 7. a) Show that $\overrightarrow{F} = (y^2 2xyz^3)i + (3 + 2xy x^2z^3)j + (6z^3 3x^2yz^2)k$ is irrotational and hence find its scalar potential.
 - b) Use Green's theorem in a plane to evaluate $\int_C \left[\left(2x y^3 \right) dx xy dy \right]$ where C is the boundary of the region enclosed by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$.
 - c) Evaluate $\iint_S \text{curl } \overrightarrow{F} \cdot \overrightarrow{n} \, dS$ using Stoke's theorem where S is the part of the surface of the paraboloid $x^2 + y^2 + z = 1$ for which $z \ge 0$ and $\overrightarrow{F} = yi + zj + xk$.

MODULE-II

- 8. a) Obtain the Fourier series of $f(x) = 2x x^2$ in 0 < x < 3.
 - b) Find the half range cosine series of $f(x) = x \sin x$ in $0 < x < \pi$.
 - c) Find the Fourier transform of $f(x) = \begin{cases} \cos x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$
- 9. a) Obtain the Fourier series of $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(x-2), & 1 < x \le 2 \end{cases}$
 - b) Obtain the half range sine series of $f(x) = e^x$ in $0 < x < \pi$.
 - c) Find the Fourier cosine transform of $f(x) = e^{-5x}$.

MODULE - III

- 10. a) Solve $p^2q^2 + x^2y^2 = x^2q^2(x^2 + y^2)$.
 - b) Solve $(x^2 y^2 z^2)p + 2xyq = 2xz$.
 - c) Solve $(D^3 7DD'^2 6D'^3)z = \sin(x + 2y)$.
- 11. a) Solve by Charpit's method, $(p^2 + q^2)x = pz$.
 - b) Solve $\frac{p}{x^2} + \frac{q}{y^2} = z$.
 - c) Solve $(D^2 2DD' + D'^2)z = e^x(x + 2y)$.

MODULE-IV

- 12. a) If a string of length 'l' is initially at rest in the equilibrium position and each of its points is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = V_0 \sin^3\left(\frac{\pi x}{l}\right)$, 0 < x < l. Find the displacement function y(x, t).
 - b) The ends A and B of a rod 20 cms long have the temperature at 0° C and 80° C until steady conditions prevail. If the temperature at B is reduced to 0° C and kept so while that of A is maintained, find the temperature function u(x, t).
- 13. a) A uniform elastic string of length 60 cm is subjected to a constant tension of 2 kg. If the ends are fixed and the initial displacement $y(x, 0) = 60x x^2$, 0 < x < 60, while the initial velocity is zero, find the displacement function y(x, t).
 - b) Solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions
 - i) $\frac{\partial u}{\partial x}(0,t) = 0$ for $t \ge 0$
 - ii) $\frac{\partial u}{\partial x}(\pi,t) = 0$ for $t \ge 0$
 - iii) $u(x, 0) = x^2, 0 < x < \pi$.